
SCIEX Triple Quad[™] 7500 LC-MS/MS 系统 – QTRAP[®] Ready对食 品中的农药进行精准测定

Jianru Stahl-Zeng¹, Ian Moore², Thomas Biesenthal², Jack Steed³, Wim Broer⁴ ¹ SCIEX, Germany;² SCIEX, Canada;³ SCIEX, UK,⁴ Nofagroup, The Netherlands

由于在农业生产中大量使用农药杀虫剂,因此需要严格和广 泛地使用分析技术,来监控农药的使用量,以确保对人类不产 生负面影响。根据这些化合物的种类,液质联用技术(LC-MS/ MS)可以实现这种精准检测。最大残留限量(MRL)是食品法规 中农药残留量的设定,它定义了食品中合法允许的农药残留的最 高水平,从而保证消费者的安全。为了确保可靠的安全性,这些 农药的 MRLs 通常被设置得很低,这就需要非常灵敏的仪器来精 准地量化这些化合物的 MRL。因此 LC-MS/MS 解决方案必须是稳 定、且灵敏的,以满足食品检测实验室的需求。

该方法中,涉及到超过 700 种化合物,它覆盖了欧洲、北美和亚洲多个地区的食品安全法规测定要求。之所以能达到如此广泛的农药覆盖范围,主要原因在于使用了 SCIEX Triple Quad 7500 LC-MS/MS 系统,它与上一代仪器相比,灵敏度有显著提高。离子产生效率和离子化效率的提高使此系统灵敏度得到显著提高。对于食品中的残留物检测,这意味着可以将更多的分析物合并到

图 1. 食品基质中溴氰虫酰胺的定量数据。水果 / 蔬菜、谷物、油料种子和 植物油基质中, 溴氰虫酰胺的两个 MRM 离子对的最低定量检出限(LLOQ) 为 5 μg/kg。

一个方法中检测,复杂的基质可以进一步稀释以减少基质效应, 而且仍然能够达到或超过法规要求灵敏度水平。

多农残同时测定的关键结果

- 10 种不同食品基质,超过 700 多种农药化合物同时定量
- 使用简单样品前处理,无需进一步的固相萃取(SPE)纯化, 食品基质被稀释并进行分析
- 在原来的方法上,进一步提高了灵敏度,对大多数待分析物而言, 标准溶液最低定量检出限(LLOQ)为 0.2 ng/mL,基质 LLOQ 为 0.5 μg/kg。
- 10 种食品基质,在 LLOQ 5 μg/kg 浓度下,离子比值用于确认鉴 定,并提高分析特异性
- 正负离子切换以提高分析的通量,同时对数据质量没有任何下降
- 一次进样分析如此广泛残留物的能力,在实验室仪器的使用寿 命中,将帮助实验室节省大量的时间和资源

方法

样品制备: 根据 SANTE/12682/2019 食品安全法规 - 从水果蔬菜、谷物、种子油、植物油、香料、牛奶、鸡蛋、肉、鱼油和脂肪酸中选出了十种代表性食品作为基质。配置含有 700 多种不同农药的储备溶液。然后根据补充信息中描述的简单处理流程进行样品制备³。简而言之,将 1g 食物基质与 10 mL 水充分混合,再加入 10 mL 乙腈。加入 QuEChERS 试剂(一种常见农药前处理方式),涡旋 10 min。样品离心 10 min 后,被冷冻。当准备分析时,将样品解冻,离心 1 min,上清液被进样。将 0.2 ~ 20 ng /mL 的农药添加到各食品基质中,构建校准曲线。

Experiment MRM Polarity Positi		sitive 🔹 Spray voltage			1500	\$	V						
Mass Table Import from file V Apply scan schedule Enhanced sMRM													
	Group ID	Compound ID	Q1 mass (Da)	Q3 mass (Da)	Custom dwell time	Dwell time (ms)	EP (V)	CE (V)	CXP (V)	Retention time (min)	Retention time tolerance (+/- s)	Q0D (V)	IQ0 (V)
1	0Atrazine-D5	0Atrazine-D5 1	221.600	179.300	E	4.545	10.0	23.0	4.0	13.70	15	-10.0	-10.0
2	0Atrazine-D5	0Atrazine-D5 2	221.600	101.400		4.545	10.0	31.0	4.0	13.70	15	-10.0	-10.0
3	OChlorpyrifos-methyl d6	0Chlorpyrifos-methyl d6 1	327.800	131.000	E	3.000	10.0	30.0	4.0	18.23	20	-10.0	-10.0
4	OChlorpyrifos-methyl d6	0Chlorpyrifos-methyl d6 2	327.800	293.000	E	3.000	10.0	26.0	4.0	18.23	20	-10.0	-10.0
5	ODichlorvos	0Dichlorvos 1	227.100	83.000	E	6.111	10.0	44.0	4.0	11.58	15	-10.0	-10.0
6	0Dichlorvos	0Dichlorvos 2	227.100	115.000	E	6.111	10.0	32.0	4.0	11.58	15	-10.0	-10.0
7	ODimethoate	0Dimethoate 1	236.100	131.000	E	14.828	10.0	30.0	4.0	8.09	15	-10.0	-10.0
8	0Dimethoate	0Dimethoate 2	236.100	205.000	E	14.828	10.0	20.0	4.0	8.09	15	-10.0	-10.0

图 2. 分窗口多反应监测算法(Scheduled MRM™ Algorithm)中高级功能。 在分析大量分析物时,强大的分析方法优化能力能大大提高数据质量。 Scheduled MRM™ Algorithm 功能可根据 MRM 出峰情况自动计算出最大驻留 时间,该设置还可让用户自行增加低丰度分析物的驻留时间。 **色谱**: ExionLC[™]AD 系统进行色谱分离,该系统提供非常低的交叉污染和完善的超高效液相色谱分离功能。色谱柱为 Phenomenex Luna Omega C18 (1.6 μm, 100×2.1mm)。 每次进样 1μL。补充信息中概述了色谱条件细节³。使用 30 min 运行时间, 面对大量的目标分析物,可获得良好分离(图3)。

质 谱: 实 验 使 用 SCIEX Triple Quad 7500 LC-MS/MS 系 统 -QTRAP Ready。该系统在 OptiFlow[™] Pro 离子源的电喷雾电离(ESI) 模式下运行。为了覆盖农药的全部范围,采用正、负电离模式, 且具有快速极性切换。使用 SCIEX OS 软件和分窗口多反应监测算 法(Scheduled MRM[™] Algorithm)功能采集数据,一次进样、同 时监控超过 1400 个 MRM 离子对(图 2)。补充信息中概述了 MS 细节条件³。

快速极性切换

除了数据采集中的时间窗口设定,正负极性快速切换能力也 是单一方法实现广泛化合物检测的关键。快速的正负切换时间对 于保证良好的扫描速度,从而对待分析物进行精准定量至关重要。 6个化合物的数据采集结果展示了优异的数据质量(图4)。

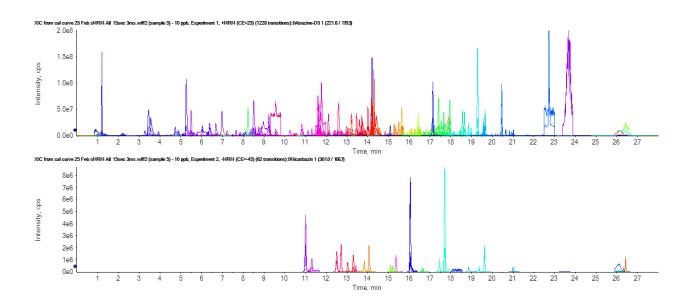
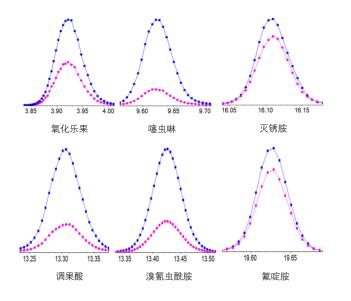
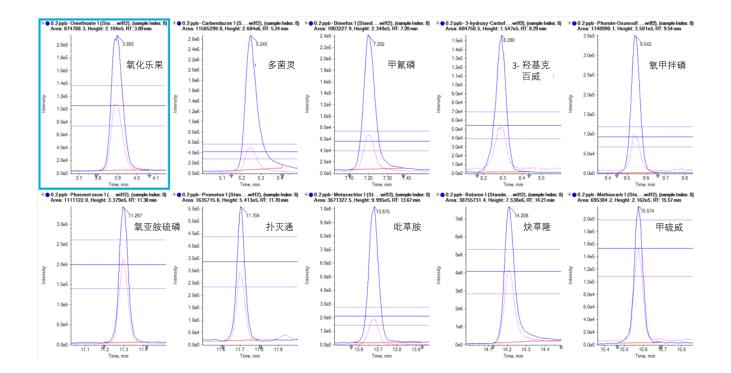



图 3. 多种农药化合物良好分离。叠加单次进样中的所有 MRM 色谱图,包括正离子模式数据(上)和负离子模式数据(下)。一次进样中,共监测了 1400 个 MRM 离子对。


图 4. 快速正负切换的重要性。正离子模式(上图)和负离子模式(下图)下, 三个待分析物色谱峰上的扫描点数说明了扫描速度。这得益于 Scheduled MRM Algorithm 功能和 SCIEX 7500 系统的快速极性切换能力。

这一性能允许一个方法分析多种化合物,提高了数据采集、 数据处理和数据报告的效率。定量离子和定性离子的色谱图被展示,突显了数据质量(图4)。

灵敏度和准确度

为 了 确 定 SCIEX Triple Quad 7500 LC-MS/MS 系 统 - QTRAP Ready 可达到的灵敏度,测定了大量农药的标准品校准曲线。从 0.2 到 20 ng/mL 浓度范围的校准曲线,显示了较高的数据质量; r 值高于 0.99;每个浓度的准确度均在可接受的范围内,高浓度为 80%-120%,低浓度为 70%-130%。标准曲线范围内,每个 MRM 离 子对都能观察到良好线性(图 6 和 7)。所选农药数据如图 6 和 7 所示。

在许多分析方法中,交叉污染和干扰是常见问题,并且应该 对其进行确认以确保分析的准确性。LLOQ(0.2 ng/mL)的标准品 和空白样品数据如图 6 和 7 所示。

图 5.10 种化合物色谱图。本图展示了 10 种化合物标品在 LLOQ 0.2 ng/mL 下,定量离子和定性离子的离子比率和其容忍限度。最上面一行展示了氧化乐果、 多菌灵、甲氟磷、3-羟基克百威和氧甲拌磷。下面一行显示了氧亚胺硫磷、扑灭通、吡草胺、炔草隆和甲硫威。

SCIEX 7500 System

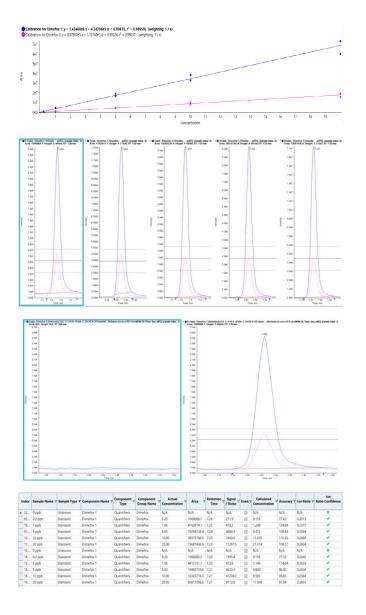


图 6. 甲氟磷标准曲线结果。(上图)溶剂标准品标准曲线结果,全浓度范围 (0.2-20 ng/mL)。(中图) 0.2、1、5、10、20 ng/mL浓度提取离子流图,以及 LLOQ (0.2 ng/mL)和空白的比较谱图。(底图)甲氟磷结果列表。数据在正离子模式下获得,展示了定量和定性两个离子对的离子比率和置信区间。

接下来,将农药混合物添加到准备好的食物基质中,评估真 实基质中的灵敏度。为了提高复杂基质中待测化合物的数据可靠 性,每个待分析物监测两个 MRM 离子对,包括定量和定性离子。 可给出离子比率,并且使用结果列表展示,整个研究的离子比率 能轻松跟踪。

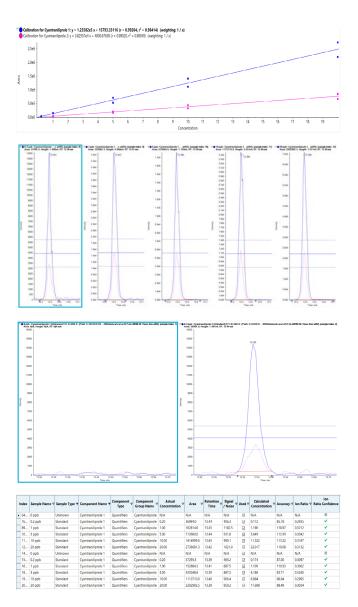


图 7. 溴氰虫酰胺标准曲线结果。(上图)溶剂标准品标准曲线结果,全浓度范围(0.2-20 ng/mL)。(中图) 0.2、1、5、10、20 ng/mL浓度提取离子流图,以及 LLOQ(0.2 ng/mL)和空白的比较谱图。(底图)溴氰虫酰胺结果列表。数据在负离子模式下获得,展示了定量和定性两个离子对的离子比率和置信区间。

10 种基质中的两个农药(甲氟磷和氰虫酰胺)结果,用来说 明数据质量。在分析的10 种基质中(图 8 和图 9),所有的离子 比率都在规定的许可范围内,这突出了 SCIEX 7500 系统在食品基 质高灵敏度残留检测中的强大能力。

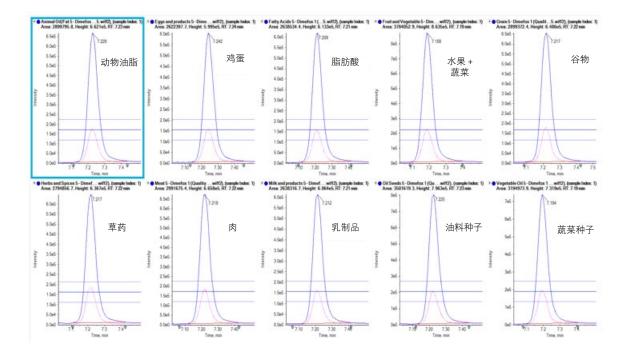


图 8. 不同食品基质中定量甲氟磷。每种测试基质中的甲氟磷(正离子模式)的代表性色谱图,LLOQ 为 5 µg /kg。

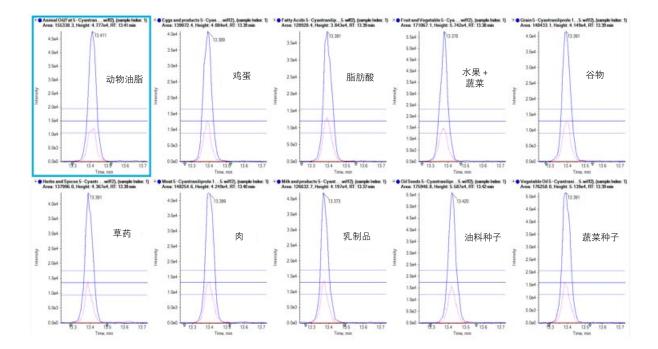
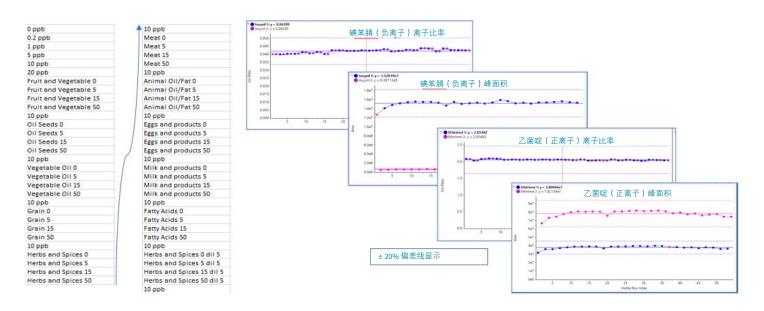



图 9. 不同食品基质中定量氰虫酰胺。每种测试基质中的氰虫酰胺(负离子模式)的代表性色谱图, LLOQ 为 5 µg /kg。

图 10. 批间重现性。设定一个长序列,运行不同的食品基质,每一样品连续重复 3 次(3.75 天,采集 90 小时)。记录全部批次的峰面积和离子比率,显 示了良好的批间重现性,突出了方法的稳健性。

重现性

为了确定该方法的稳健性,设定并运行一个包含代表性基质的长序列。同时记录 QC 样品的峰面积和离子比率(图 10),展示了优异重现性。

结论

总而言之,SCIEX Triple Quad 7500 LC-MS/MS 系统-QTRAP Ready 为多种食品基质中的农药痕量残留分析提供了令人印象深刻的灵 敏度、稳定性和准确性。本研究利用快速极性切换功能和强大的 Scheduled MRM Algorithm 功能,一针进样分析了 700 个化合物, 超过 1400 个 MRM 离子对。对每个分析物采用多个 MRM 离子对监 测确保了检测的可信度。大多数农药的定量限为 0.2 ng/mL。多批 次分析证明了该方法对复杂食品基质中多农药分析的稳健性。

文献

- Enabling new levels of quantification. SCIEX technical note RUO-MKT-02-11886-A.
- 2. Sensitivity gains for the evolution of routine bioanalysis. SCIEX technical note RUO-MKT-02-11885-A.
- 3. Download Supplementary information.
- C. Tomlin, The Pesticide Manual A World Compendium, 13th ed., (British Crop Protection Council [BCPC], Alton, Hampshire, UK, 2003).
- European Commission EU Pesticides Database, https://ec.europa. eu/food/plant/pesticides_en
- European Commission Maximum Residue Levels, https:// ec.europa.eu/food/plant/pesticides/max_residue_levels_en

SCIEX临床诊断产品线仅用于体外诊断。仅凭处方销售。这些产品并非在所有国家地区都提供销售。获取有关具体可用信息,请联系当地销售代表或查阅https://sciex.com.cn/diagnostics。 所有其他产品仅用于研究。不用于临床诊断。本文提及的商标和/或注册商标,也包括相关的标识、标志的所有权,归属于AB Sciex Pte. Ltd. 或在美国和/或某些其他国家地区的各权利所有 人。© 2020 DH Tech. Dev. Pte. Ltd.

RUO-MKT-02-11917-ZH-A

 SCIEX中国

 北京市朝阳区酒仙桥中路24号院

 1号楼5层

 电话:010-5808-1388

 传真:010-5808-1390

 全国咨询电话:800-820-3488,400-821-3897

上海公司及中国区应用支持中心 上海市长宁区福泉北路518号 1座502室 电话:021-2419-7200 传真:021-2419-7333 官网: sciex.com.cn

广州分公司 广州市天河区珠江西路15号 珠江城1907室 电话:020-8510-0200 传真:020-3876-0835 官方微信:ABSciex-China