Biomarkers and Omics

高通量脂质鉴定:SWATH[®]高分辨质谱全景采集技术结合 MS-DIAL处理数据软件

基于TripleTOF[®]质谱仪,使用SWATH[®]采集技术进行非靶向脂质组学的工作流程

High-Throughput Lipid Profiling with SWATH[®] Acquisition and MS-DIAL

Untargeted Lipidomics Workflow with SWATH® Acquisition on TripleTOF® 6600 System

Hiroshi Tsugawa^{1,2}, Atsushi Hanada³, Kazuki Ikeda^{1,4}, Yosuke Isobe¹, Yuya Senoo¹, Makoto Arita^{1,4,5}

¹ RIKEN可持续资源科学中心, 日本, ² RIKEN 综合医学中心, 日本, ³ SCIEX, 日本, ⁴ 药物科学研究生院, 横滨市立 大学, 日本, ⁵ 药物科学研究生院, 庆应义塾大学, 日本

Key Word: SWATH[®], TripleToF[®], Lipidomics, MS-DIAL

在自然界,脂质是一类多种多样的生物分子,因为大量的脂 质包含了不同的侧链和头基。在非靶向脂质组学分析中,主要的 瓶颈是在复杂生物样品中准确的鉴定脂质。而现在在复杂生物样 品中准确鉴定脂质又有了一个新的兴趣点,就是将复杂生物样品 中检测到的脂质的MS/MS二级质谱图与对照样品的MS/MS二级质 谱图或者使用计算机模拟 MS/MS谱库1进行匹配。通常,数据依 赖性采集(DDA)技术不会采集所有母离子的MS/MS二级质谱, 但是数据非依赖性扫描方法,如SWATH[®]采集技术和数据非依赖性 采集方法(DIA),可以保证采集到样品中可测得所有化合物的碎 片离子,并且有效的产生所有可测得代谢物的数字化记录。

在该文中,非靶向脂质组学工作流程已被验证,包括: 1个 简单的从20 µL小鼠血浆中提取脂质的方法,1个15 min 的SWATH[®] 采集方法,和1个使用MS-DIAL软件(Mass Spectrometry -Data Independent Analysis)约1小时的数据分析流程。MS-DIAL 是一个资 源开放的软件,可分析从基于DIA采集技术和DDA等非靶向LC-MS/ MS采集技术获得的数据,并对小分子化合物和脂质进行定性和定 量分析,及通过MS/MS二级进行脂质鉴定的确认。按照该文中的工 作流程,通过MS/MS二级的确认后,在小鼠血浆(3组,每组4个 样品)中的测得的420张质谱图中,鉴定了322个脂质化合物。小 鼠血浆由RIKEN中心的整合生物医学科学代谢研究团队(Integrated Biomedical Sciences Metabolome Research Team)提供。

3组不同喂食组的大鼠血浆样品中,脂质定量结果是有明显的 差异(见图1)。

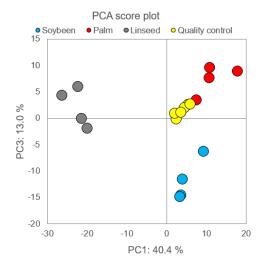


图1. 使用MS-DIAL软件鉴定到的所有322个脂质的PCA 分析图。图中,QC 样品与其他三个不同喂食组的样品结果相比,PCA score plot 显示了明显 的差异。

SWATH[®]采集方法结合MS-DIAL软件处理数据的 工作流程

- 使用数据非依赖性SWATH[®]采集方法,可获得所有可测得化合物的MS/MS二级质谱图,并且有充分的信心用于脂质鉴定
- MS-DIAL软件中,根据峰形分离计算法(去卷积功能)2,对 SWATH[®]采集到的混合的MS/MS二级图谱进行去卷积,使得鉴 定工作简单化
- MS-DIAL软件使用的数据库包含有61,513个脂质化合物,并且包含了在相应的正负离子模式下的135,456个二级碎片质谱图。
- 另外,在该文中的LC-MS/MS方法下,脂质"已知保留时间" 可提高鉴定的可靠性。

方法

小鼠血浆样品准备:在该研究中,8周龄的C57BL/6J小鼠(4只 雄性)被喂食优质酵母饲料一周。这些酵母饲料中分别添加了4% 大豆油,棕榈油或者亚麻籽油。收集小鼠全血,加入肝素钠抗凝 后,提取每个样品中的血浆(收集3种不同饲料组的4个样品)。

表1. 液相条件。

Parameter	Setting	
Flowrate	0.6 mL/min	
Autosampler temp.	4 °C	
Injection volume	3 mL (positive) 5 mL (negative)	
Column temperature	65 °C	

表2. 液相梯度洗脱程序。

Time	%B
0	15
2	30
2.5	48
11	82
11.5	99
12	99
12.1	15
15	15

脂质提取:取二氯甲烷:甲醇:血浆样品=100 μL:200 μL:20 μL, 混合,提取脂质。从每一个最终混合为320 μL的脂质样品提取液 中,各取50 μL混合为一个QC样品。此外,取空白血浆,使用同 样的提取方法提取两个空白样品(blanks)。最后,从每个样品, QC 和空白样品各转移150 μL至进样瓶中,用于LC-MS/MS分析。 每进样3针,插入一针QC 样品,以便监控整个分析过程中质谱的 灵敏度。备注:每次进样QC样品,均使用同一个进样小瓶中的QC 。但是,如果考虑到如样品的蒸发等因素,则推荐配制一份大体 积QC样品,分装到独立的进样瓶中进样分析。

LC-MS/MS分析: 液质联用系统: Shimazu Nexera UHPLC系统, SCIEX TripleTOF[®]系统。色谱柱: Waters ACQUITY CSH C18 2.1×100 mm, 1.7 μm。为了大批量分析样品,建议使用Waters ACQUITY VanGuard CSH C18 1.7 μm预柱,用于保护色谱柱,并 且在每进样300针后更换预柱。同时建议在进样1000到1500针 后,更换色谱柱。液相条件见表1,LC方法梯度见表2,质谱参数 见表3。

表3. 质谱参数。

Parameter	Setting	
MS1 mass range (Positive)	100-1250	
MS1 mass range (Negative)	200-1250	
SWATH scan range	350-1250	
MS/MS mass range	100-1250	
TOF MS accumulation time	50 ms	
TOF MS/MS accumulation time	10 ms*	
Collision energy	45 V	
Collision energy spread	15 V	
Precursor window	15 Da	
Cycle time	700 ms	
CUR	35	
GS1	60	
GS2	60	
ТЕМ	350	
CE	10	
DP	80	
ISVF (Positive)	5500	
ISVF (Negative)	4500	

*Note for a more quantitative method, longer MS/MS accumulation times can be used.

分别在正离子和负离子模式下,进样分析2个空白样品,12 个样品,2个进样瓶中的QC样品,以及一个进样小瓶的去离子水 (作为空白溶剂)。进样顺序按表4进样,生物样品可按序随机进 样。

表4.LC-MS/MS 进样分析顺序。

Injection	Sample	
1	Water	
2	Blank-1	
3	Blank-2	
4	QC-1	
5	QC-2	
6	Sample-1	
7	Sample-2	
8	Sample-3	
9	QC-3	
10	Sample-4	
11	Sample-5	
12	Sample-6	
13	QC-4	
14	Sample-7	
15	Sample-8	
16	Sample-9	
17	QC-5	
18	Sample-10	
19	Sammple-11	
20	Sample-12	
21	QC-6	

流动相A: 60%乙腈/水(包含10 mmol/L 甲酸铵和0.1%甲酸)。每进样200针,流动相各需要1 L。首先,用乙腈润洗玻璃瓶,然后加入600 mL乙腈, 399 mL HPLC级别水和1 mL甲酸,混匀后,称入0.63 g甲酸铵,室温超声10 min。

流动相B: 90%异丙醇, 9.8%乙腈/水(包含10 mmol/L 甲酸铵和0.1%甲酸)。取1 mL纯化水至烧杯中,再加入1 mL甲酸,作为

混合溶剂。称量0.63 g甲酸铵,慢慢的混入上述的混合溶剂中,使 三者混合溶解。取乙腈润洗后的1 L玻璃瓶,加入烧杯中的溶剂, 再加入900 mL异丙醇,98 mL乙腈,室温下超声10 min。

使用流动相前,需确认甲酸铵完全溶解,且气泡完全消失。

脂质鉴定

使用MS-DIAL软件(版本号1.98)处理SWATH[®]采集的数据。 结果,在正离子模式和负离子模式下总共鉴定到322种脂质(见表 5)。MS-DIAL软件在自动查找峰,峰形处理,以及化合物鉴定, 并结合MS/MS二级进行确认,大约1小时完成脂质鉴定。MS-DIAL 软件的自动鉴定功能通过高可信度的综合指数来实现的,这个指 数同时考虑了保留时间和同位素分布以及使用最常用的向量点积 法2计算的MS/MS二级相似度。MS-DIAL图形用户交互功能也支持 用户对鉴定结果进行手动纠正(见图2)。

表5. 从SWATH[®]采集数据和MS-DIAL处理结果中鉴定到的脂质种类。在正 离子模式和负离子模式下,SWATH[®]采集数据和MS-DIAL处理数据程序,鉴 定到总共322个无重复计数的脂质。

Lipid Class	Positive Modes	Negative Mode
Acylcarnitine (AC)	6	0
Free fatty acid (FFA)	0	17
LysoPC	32	26
LysoPE	2	9
Phosphatidylcholine (PC)	69	43
Phosphatidylethanolamine (PE)	15	22
Phosphatidylglycerol (PG)	0	1
Phosphatidylinositol (PI)	0	8
PlasmenyIPC	17	7
PlasmenyIPE	9	15
Sphingomyelin (SM)	5	0
Diacylglycerol (DAG)	12	0
Triacylglycerol (TAG)	96	0
Cholesteryl ester (CE)	9	0
Total	272	148

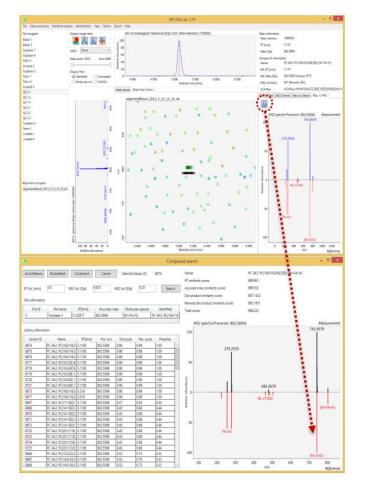


图2. MS-DIAL 鉴定和确认流程。MS-DIAL主界面提供校值和鉴定结果表。 右下角图片显示某一个时间点的保留时间,m/z和MS/MS二级图谱和数据 库的图谱。通过点击放大的图标,该鉴定结果的候选化合物列表就可以显 示出来,可接受标准是如有必要,用户可纠正鉴定结果。

QC 样品的使用

定量值的标准化,可通过合并的QC 样品(QC)4定量值 的LOESS归一化函数法来实现(LOcally WEighted Scatter-plot Smoother,局部加权回归散点法)。在假定每3-5个样品测试一 次QC的频率下所测得的QC定量值,每个化合物的MS一级信号定 量值的波动均可被计算,这也是用于大批量研究并在MS-DIAL3中 实施的常用方法。当QC定量值被设置为1时,其他样品中的每一 个定量值均以相对值来显示。这个方法的优点在于不但抵消了每 次分析时MS一级定量值的波动,而且可以对正离子模式和负离 子模式的数据进行整合(因为基于QC,所有定量结果已经被标准 化)。 再者,同质量水平QC样品的有效性还可以整合数月和数年的数据。QC原始离子丰度的平均值或中间值与归一化值相乘,这样的话,每个代谢物的离子丰度信息均可被考虑用于数据的解释。

脂质定量结果

将鉴定到的420个脂质图谱进行主成分分析(PCA)后,在喂 食条件的表型显像上,结果显示有明显的区别(见图1)。结合被 喂食不同饲料的小鼠的生物模型,在PCA分析结果图中,55%的 数据是可被解释的。已鉴定到的脂质列表(见表6)显示,在被喂 食含亚麻籽油饲料的小鼠中,组成脂肪酸的成分是从ω3系列脂 肪酸中分离的18:3(α-亚油酸),20:5(二十碳五烯酸,EPA), 22:6(二十二碳六烯酸,DHA)。在被喂食富含ω3脂肪酸的亚麻籽油 的小鼠血浆样品中,磷脂和甘油三酯的量也是相应增加。

另一方面,棕榈油中80%脂肪酸成分由16:0(棕榈酸)和 18:2(亚油酸)组成,当查看以含棕榈油为饲料的小鼠血浆的脂 质成分时,磷脂和甘油三酯与上述两种脂肪酸均相应增加。另 外,大豆油中主要的脂肪酸成分是18:2(亚油酸),在被喂食大 豆油的大鼠血浆中,亚油酸的量也是相应增加。

因为该方法中,双键和酰基基团的位置不能被测定,A和B标 注为分别来自于不同的洗脱时间的两个化合物(见表6)。"p-" 代表是缩醛磷脂型。

结论

该文介绍了SWATH[®]采集技术结合MS-DIAL软件鉴定脂质的 工作流程,为鉴定同分异构体和有机元素结合信息提供了参考。 从420个匹配的脂质图谱中,鉴定了322个无重复计数的脂质,不 包括所有重复的,例如同时在正离子和负离子模式下都鉴定到, 以及同一化合物的不同加和离子。对鉴定到的所有脂质种类进行 定量时,可发现被喂食了三种不同添加油的样品组有明显的的区 分。

表6. 在被喂食不同饲料的小鼠血浆中,有显著性改变的脂质分子列表。

Linseed Oil	Palm Oil	Soybean oil
18:3 Cholesteryl ester	DAG(16:0/18:1/0:0)	DAG(18:2/20:1/0:
20:5 Cholesteryl ester	DAG(18:1/18:0/0:0)	lysoPC 18:2
DAG(18:2/18:3/0:0)	DAG(18:1/18:1/0:0)	lysoPC 20:4
FA 18:3	PC(16:0/16:1)	PC(18:0/20:4)
FA 20:5	PC(16:0/17:1)	PE(P-20:0/18:2)
lysoPC 18:3-A	PC(16:0/18:1)	PE(P-20:0/20:4)
lysoPC 18:3-B	PC(17:0/18:1)	
lysoPC 20:5-A	PC(18:0/18:1)	
lysoPC 20:5-B	PE(16:0/18:1)	
lysoPC 22:5	PE(18:0/18:1)	
PC(14:0/20:5)	PI(18:0/20:3)	
PC(16:0/20:5)	TAG(14:0/16:0/16:0)	
PC(16:1/18:3)	TAG(14:0/16:0/16:1)	
PC(16:1/20:5)	TAG(16:0/16:0/16:0)	
PC(18:0/20:5)	TAG(16:0/16:0/18:1)	
PC(18:2/18:3)	TAG(16:0/16:0/20:2)	
PC(18:3/18:3)	TAG(16:0/16:1/16:1)	
PC(18:3/20:5)	TAG(16:0/16:1/17:0)	
PC(20:5/22:6)	TAG(16:0/16:1/17:1)	
PC(22:6/18:3)	TAG(16:0/16:1/18:1)	
PE(16:0/20:5)	TAG(16:0/17:0/18:1)	
PE(16:1/20:5)	TAG(16:0/18:0/16:0)	
PE(18:0/20:5)	TAG(16:0/18:0/18:1)	
PE(18:1/20:5)	TAG(16:0/18:1/20:1)	
PE(P-16:0/20:5)	TAG(17:0/17:1/17:1)	
PE(P-16:0/20:5)	TAG(18:0/18:1/20:4)	
PE(P-18:0/20:5)	TAG(18:1/18:1/18:1)	
PE(P-18:0/20:5)	TAG(18:1/18:1/20:1)	
PE(P-20:0/20:5)		
TAG(16:0/18:2/18:3)		
TAG(16:0/18:3/18:3)		
TAG(16:0/18:3/20:5)		
TAG(16:0/20:5/20:5)		
TAG(16:1/18:2/22:6)		
TAG(16:1/18:3/18:3)		
TAG(16:1/18:3/20:5)		
TAG(16:1/20:5/20:5)		
TAG(16:2/20:3/22:5)		

参考文献

- Kind T, Liu KH, Lee do Y, DeFelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods. 2013;10:755-758.
- Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015 Jun; 12(6): 523-526.
- Stein, S. E. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. Journal of the American Society for Mass Spectrometry, August 1999, Volume 10, Issue 8, pp 770-781.
- Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, Vol. 6 (7), 06.2011, p. 1060 -1083.

For Research Use Only. Not for use in Diagnostics Procedures.

AB Sciex is operating as SCIEX. © 2019. AB Sciex. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. RUO-MKT-02-8536-ZH-A

 SCIEX中国公司
 上海

 北京分公司
 上海

 地址:北京市朝阳区酒仙桥中路24号院
 地址:

 1号楼5层
 地址:

 电话:010-5808 1388
 电话:

 传真:010-5808 1390
 传真:

 全国免费垂询电话:800 820 3488,400 821 3897

 上海市长宁区福泉北路518号

 1座502室

 电话:021-24197200

 传真:021-24197333

 3897

 网址:www.sciex.com.cn

广州分公司 地址: 广州市天河区珠江西路15号 珠江城1907室 电话: 020-85100200 传真: 020-38760835

微博: @SCIEX