

LC-MS/MS系统对血清中色氨酸及其4种代谢物检测

Determination of tryptophan and its four metabolites in serum by LC-MS/MS

胡凤梅,黄超,赵祥龙,郭立海 Chen Yan, Huang Chao, Zhao Xianglong, Guo Lihai

Key word: Tryptophan, Kynurenine, 5-hydroxytryptamine, 5-hydroxyindoleacetic acid, Melatonin

引言

色氨酸是一种必需氨基酸,人体无法自行合成,只能通过饮食摄入。除了参与蛋白质合成外,色氨酸还是多种生物活性物质的前体。研究表明,色氨酸代谢物与多种疾病密切相关,包括神经系统疾病、炎性肠病、肿瘤和肾病。

据报道,人体内色氨酸代谢主要经过三条途径:首先是犬尿氨酸途径,约占95%;其次是5-羟色胺途径,约占2%;最后是与肠道菌群相关的吲哚途径。在5-羟色胺代谢途径中,神经递质如5-羟色胺、多巴胺在中枢神经系统中调节情绪、睡眠和认知等功能。而褪黑素则调节昼夜节律、清除自由基、具有抗氧化等生理功能,可作为生物钟信号,并在大脑默认模式网络中促进睡眠。有研究显示,抑郁症患者血浆中色氨酸和5-羟色胺水平明显低于健康人群。为了深入探索神经性疾病与色氨酸代谢的关系,并且帮助临床客户进行疾病诊断,本文建立了一套液相色谱串联质谱检测方法,针对血液中的色氨酸、犬尿氨酸、5-羟色胺、5-羟吲哚乙酸和褪黑素进行定量分析。

实验部分

1. 样品前处理:

准确移取200 μ L血清样本于1.5 mL离心管中,加入10 μ L混合内标,然后加入600 μ L沉淀剂,2000 rpm涡旋5 min,4 $^{\circ}$ C下13000 rpm离心10 min。移取上清液氮吹并复溶,上机分析。

2. 色谱质谱条件:

色谱条件: 色谱柱: C18 1.8 μm, 100 × 2.1 mm, 流动相:

A: 含甲酸的水溶液, B: 乙腈溶液, 柱温: 40 ℃, 进样量: 15μL, 流速: 0.3 mL/min, 梯度洗脱, 液相梯度见表1。

表1. 液相洗脱条件

时间(min)	A(%)	B(%)
0.00	3	97
1.00	3	97
1.50	25	75
3.00	25	75
3.50	70	30
4.50	70	30
5.00	97	3
6.00	97	3
6.01	3	97
7.50	3	97

质谱条件: ESI(+)

气帘气 CUR: 20 碰撞气 CAD: Medium

雾化气 GS1:55 辅助加热气 (Gas2):40.0

电喷雾电压: 3500 源温度 TEM: 450 ℃

质谱参数见表2

结果与讨论

以纯水为基质,色氨酸及4种代谢物的代表谱图如图1所示。

RUO-MKT-32022-ZH-A p 1

表2. 目标组分的质谱参数

分析物	Q1	Q3	DP	CE
褪黑素	233.1	174	55	22
巡杰系	255.1	158.9	55	36
- 42 mlnn -7 =4	192	146.1	70	24
5-羟吲哚乙酸	192	119.1	70	29
r X A 贮	177	160.1	50	15
5-羟色胺	177	132	50	30
土尼气 酚	209.2	94.1	60	21
犬尿氨酸	209.2	136.1	60	20
名气酚	205.1	188	150	13
色氨酸	205.1	118.1	150	35
褪黑素-d3	236.1	174	55	22
5-羟吲哚乙酸-d6	198.2	151.1	75	25.5
5-羟色胺-d4	181.1	164.1	50	15
犬尿氨酸-d4	213.2	98.1	60	18
色氨酸-d6	211.2	192.1	150	14
	·	·	·	

* 定量离子

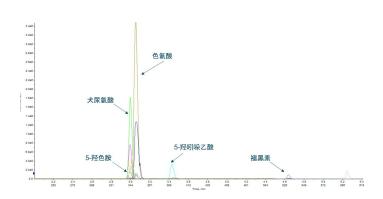


图1. 色氨酸及4种代谢物的典型色谱图

1. 线性

以纯水为替代基质,配制混合标曲溶液,按上述前处理步骤进行处理,制作标准工作曲线。表3显示各化合物的线性范围及回归方程,色氨酸及4种代谢物在相应的浓度范围内线性良好,且回归系数均大于0.99。

表3. 回归方程和线性范围

化合物	线性范围	回归方程(相关系数r)	
5-羟色胺	0.4~200 ng/ml	y=0.04835x-0.00155 (r=0.99503)	
5-羟吲哚乙酸	0.4~200 ng/ml	y=0.02422x+2.4288e-4 (r=0.99304)	
色氨酸	0.06~30 µ g/ml	y=0.02538x+0.00116 (r=0.99722)	
犬尿氨酸	2~1000 ng/ml	y=0.00533x-0.00115 (r=0.99800)	
褪黑素	1~500 pg/ml	y=0.01135x+0.00239 (r=0.99567)	

2.准确度

向血清样本中添加低、中、高三个浓度的工作溶液计算加标回收率,考察该检测方法的准确度和精密度。结果如表4所示,不同浓度下加标回收率(n=3)满足临床检测需求。

表4. 加标回收率和精密度实验结果

化合物	加标浓度	准确度(%)	精密度(%)
5-羟色胺	0.8 ng/mL	98.67	1.2
	5 ng/mL	95.34	2.6
	100 ng/mL	109.71	2.2
5-羟吲哚乙酸	0.8 ng/mL	102.87	6.0
	5 ng/mL	101.13	6.2
	100 ng/mL	111.09	2.6
色氨酸	0.12 μg/mL	98.30	4.5
	0.75 μg/mL	96.64	8.0
	15 μg/mL	100.47	11.5
犬尿氨酸	4 ng/mL	102.28	3.8
	25 ng/mL	100.01	1.2
	500 ng/mL	103.33	3.6
褪黑素	2 pg/mL	110.53	2.2
	12.5 pg/mL	99.37	4.8
	250 pg/mL	110.74	3.9

RUO-MKT-32022-ZH-A p 2

总结

本方案基于SCIEX Triple Quad™系统,建立了血清中色氨酸及 其4种代谢物含量测定的LC-MS/MS方法。该方案控制了前处理的成 本,且在保证褪黑素灵敏度的同时,对不同性质的5-羟色胺及5-羟 吲哚乙酸进行共同检测,满足了临床上通量及痕量检测的需求, 对睡眠障碍及抑郁相关精神疾病的相关研究提供了解决方案。

仅限专业展会等使用、仅向专业人士提供的内部资料。

SCIEX临床诊断产品线仅用于体外诊断。仅凭处方销售。这些产品并非在所有国家地区都提供销售。获取有关具体可用信息,请联系当地销售代表或查阅https://sciex.com.cn/diagnostics。所有其他产品仅用于研究。不用于临床诊断。本文提及的商标和/或注册商标,也包括相关的标识、标志的所有权,归属于AB Sciex Pte. Ltd. 或在美国和/或某些其他国家地区的各权利所有人。

© 2024 DH Tech. Dev. Pte. Ltd. RUO-MKT-32022-ZH-A

SCIEX中国

北京分公司 北京市朝阳区酒仙桥中路24号院 1号楼5层 电话: 010-5808-1388 传真: 010-5808-1390

全国咨询电话: 800-820-3488,400-821-3897

上海公司及中国区应用支持中心 上海市长宁区福泉北路518号 1座502室

电话: 021-2419-7201 传真: 021-2419-7333 官网: sciex.com.cn 广州办公室 广州国际生物岛星岛环北路1号 B2栋501、502单元 电话: 020-8842-4017

官方微信: SCIEX-China